Control Panel Local Setup
This guide walks you through setting up Cuemeet locally for development and testing purposes.
Prerequisites
Before you begin, make sure you have the following installed:
- Git
- Docker and Docker Compose
- Node.js (v14 or later) - Optional for local development without Docker
- Python 3.10 or higher - Optional for local development without Docker
Installation Steps
- Clone the repository
git clone https://github.com/CueMeet/Meeting-Bots-Control-Panel.git
cd Meeting-Bots-Control-Panel
Project Folder Structure
Click to expand folder structure
.
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── api-backend
│ ├── Dockerfile
│ ├── Makefile
│ ├── README.md
│ ├── nest-cli.json
│ ├── package.json
│ ├── src
│ ├── test
│ ├── tsconfig.build.json
│ ├── tsconfig.json
│ └── yarn.lock
├── assets
│ ├── banner.png
│ └── cuemeet-logo.png
├── docker-compose.yml
├── pg-db
│ └── init-multiple-databases.sql
├── protos
│ └── worker_backend.transcript_management
└── worker-backend
├── Dockerfile
├── Makefile
├── README.md
├── api
├── manage.py
├── nltk
├── poetry.lock
├── pyproject.toml
└── worker_backend
- Configure Environment Variables
Click to view/copy Backend API .env configuration
# Backend API Configuration
# Application
PORT=4000
NODE_ENV=development
CORS_ALLOWED_ORIGINS=*
# Database
DB_HOST=pg-db
DB_PORT=5432
DB_USERNAME=meetingbots_user
DB_PASSWORD=cuecard-meting-bots-secret
DB_DATABASE=meetingbots_db_backend_api
# Redis
REDIS_HOST=redis
REDIS_PORT=6379
# AWS (Must be filled in from AWS setup steps)
AWS_ACCESS_KEY= # Your AWS Access Key from AWS setup
AWS_SECRET_KEY= # Your AWS Secret Key from AWS setup
## S3
AWS_BUCKET_REGION= # Your S3 bucket region
AWS_MEETING_BOT_BUCKET_NAME= # Your S3 bucket name
## ECS (Must match the AWS configurations)
AWS_ECS_CLUSTER_NAME= # Your AWS ECS Cluster Name
AWS_SECURITY_GROUP= # Your AWS Security Group ID
AWS_VPS_SUBNET= # Your AWS Subnet ID
ECS_TASK_DEFINITION_GOOGLE= # Task Definition for Google Meet bots
ECS_CONTAINER_NAME_GOOGLE= # Container Name for Google Meet bots
ECS_TASK_DEFINITION_ZOOM= # Task Definition for Zoom bots
ECS_CONTAINER_NAME_ZOOM= # Container Name for Zoom bots
ECS_TASK_DEFINITION_TEAMS= # Task Definition for Microsoft Teams bots
ECS_CONTAINER_NAME_TEAMS= # Container Name for Microsoft Teams bots
# Meeting Bot
MEETING_BOT_RETRY_COUNT=2
# Worker Backend gRPC URL
WORKER_BACKEND_GRPC_URL=worker-grpc:5500
⚠️ Important: The AWS-related environment variables must be obtained from the AWS Setup Guide. Complete the AWS setup first and copy the relevant values into this file.
Click to view/copy Worker API .env configuration
# Worker API Configuration
DJANGO_SETTINGS_MODULE=worker_backend.settings
DJANGO_SECRET_KEY=8b1336ae5f72ec7e949e787054976962a85fb1ca935da5ca59ba0448eae178b1336ae5f7204
DEBUG=True
STATIC_URL=/static/
ALLOWED_HOSTS=*
CORS_ALLOWED_ORIGINS=*
## PG Database
DB_USERNAME=meetingbots_user
DB_PASSWORD=cuecard-meting-bots-secret
DB_NAME=meetingbots_db_worker
DB_HOST=pg-db
DB_PORT=5432
# Redis Configuration
REDIS_HOST=redis
REDIS_PORT=6379
REDIS_DB=2
# AWS Configuration
AWS_ACCESS_KEY_ID= # Your AWS Access Key from AWS setup
AWS_SECRET_ACCESS_KEY= # Your AWS Access Key from AWS setup
## AWS S3
AWS_REGION= # Your S3 bucket region
AWS_STORAGE_BUCKET_NAME= # Your S3 bucket name
_SIGNED_URL_EXPIRY_TIME=60
## HIGHLIGHT
HIGHLIGHT_PROJECT_ID=""
HIGHLIGHT_ENVIRONMENT_NAME=""
## ASSEMBLY AI
ASSEMBLY_AI_API_KEY="" # https://www.assemblyai.com API KEY
- Docker Compose Configuration
docker-compose.yml
services:
backend-api:
container_name: backend_rest
build:
context: ./api-backend
dockerfile: Dockerfile
ports:
- "4000:4000"
depends_on:
- pg-db
- redis
worker-api:
container_name: worker_rest
build:
context: ./worker-backend
dockerfile: Dockerfile
command: python manage.py migrate && gunicorn worker_backend.wsgi:application --workers 4 --bind 0.0.0.0:8000
ports:
- "8000:8000"
depends_on:
- pg-db
- redis
- backend-api
worker-grpc:
container_name: grpc-server
restart: always
image: cuemeet:worker-backend
command: bash -c "echo 'Starting gRPC server...' && python manage.py grpcrunaioserver 0.0.0.0:5500 --max-workers 2 --verbosity 3"
# ports: ## Uncomment this if you want to expose grpc port
# - "5500:5500"
depends_on:
- pg-db
- redis
- backend-api
- worker-api
redis:
image: redis:alpine
container_name: redis
restart: always
# ports: ## Uncomment this if you want to expose redis port
# - "6379:6379"
pg-db:
image: postgres:16
container_name: postgres_db
restart: always
volumes:
- postgres_data:/var/lib/postgresql/data
- ./pg-db/init-multiple-databases.sql:/docker-entrypoint-initdb.d/init-multiple-databases.sql
# ports: ## Uncomment this if you want to expose postgres port
# - "5432:5432"
env_file:
- ./pg-db/.db.env
celery_worker:
container_name: celery_worker
build:
context: ./worker-backend
dockerfile: Dockerfile
command: celery -A worker_backend worker --loglevel=info --concurrency=4
depends_on:
- redis
- pg-db
- worker-api
flower:
container_name: flower
build:
context: ./worker-backend
dockerfile: Dockerfile
command: celery -A worker_backend flower --port=5555
ports:
- "5556:5555"
depends_on:
- redis
- worker-grpc
documentation:
container_name: documentation
build:
context: ./documentation
dockerfile: Dockerfile
ports:
- "6000:3000"
volumes:
postgres_data:
driver: local
- Start the Services
# Build and start all services
docker compose up -d
# Check service status
docker compose ps
# Stop the service
docker compose down
The services will be available at:
- Backend API:
http://localhost:4000
- Worker API:
http://localhost:8000
- Worker gRPC:
worker-grpc:5500
(internal only — accessible via Docker Compose network) - PostgreSQL:
pg-db:5432
(internal only — accessible via Docker Compose network) - Redis:
redis:6379
(internal only — accessible via Docker Compose network)
Database Migrations
For the Backend API(Nest.js)
- Automatic Migrations are configured
For the Worker API (Django):
# Run migrations
python manage.py migrate
Troubleshooting
Common Issues
Container Startup Issues
- Ensure all required ports (4000, 8000) are available
- Check if Docker daemon is running
- Verify environment variables are set correctly
Database Connection Issues
- Ensure PostgreSQL container is running:
docker-compose ps
- Check logs:
docker-compose logs pg-db
- Verify database credentials in both .env files
Service Dependencies
- Backend API must be running for Worker API to function properly
- Check service logs:
docker-compose logs backend-api
docker-compose logs worker-api
Next Steps
Once you have your local setup working:
- Proceed to AWS Setup for production deployment
- Explore the API Documentation
- Configure your Bot Settings